

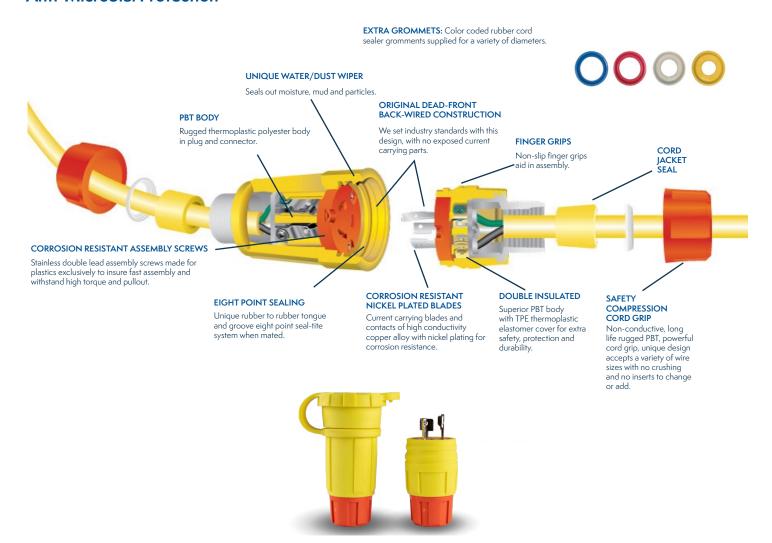
Controlling

Dangerous Bacteria

in Food & Beverage Processing Operations



# Delivering Safe and Microbe-Free Portable Process Power.


Portable food processing, packaging, and conveyance equipment, allow companies the flexibility to adjust food processing lines to maximize process efficiency and throughput.

They key to portability is the ability to delivery power to delivery flexible electrical power through portable electrical cord and NEMA locking plugs or Pin & Sleeve, connectors, and receptacles. All these connections are susceptible to air and water borne bacteria that collect on their surfaces, supporting dangerous bacterial growth.

Despite a ridged cleaning regimen, the risk of mold, mildew and bacteria is ever present. Given the opportunity to flourish, these microbes can develop into harmful bacteria affecting entire operations and affect the health and lives of employees and customers.

In response, Ericson developed, and patented, its line of Perma-Kleen Wiring Devices and Portable Cord. This suite of portable electrical power products is embedded with anti-microbial additives throughout polymer used in the construction of the device and insulation of the cord. These additives inhibit the microbe's ability to reproduce and grow. These additives remain in the construction of the cord and cannot be washed off. Even cord and devices subject to abrasion, nicks or cuts will continue to protect companies from these dangerous bacteria.

#### **Anti-Microbial Protection**



# **Understanding Performance Characteristics**

Anti-microbial performance is usually discussed in terms of Log Kill, Percent Kill, and Log Reduction. Let's discuss the differences between these.

Log Kill is the measure of the starting population of organisms minus the number of surviving organisms. The results are reported as a logarithm of the killed organisms. For example, if the starting population is 1,000,000 organisms, and the number of surviving organisms is 750, the Log Kill rate is:

Log Kill = Log (1,000,000-750) = Log (999,250) = 5.9997

Percent Kill involves the same formula from above, except that the result is represented as a percentage. Utilizing the same rate as above, the Percent Kill would be:

Percent Kill= (999,250/ 1,000,000) \* 100= 99.925%

Log Reduction is the reduction factor calculated using the initial starting population of the organisms compared to the surviving number. The results in this case are reported as a base 10 Log. See page 5 for an illustration of the Log Reduction factor for several different kill examples and associated Percent Kill values.

| Log | Reduction Factor | Remaining Organisms | Percent Kill |
|-----|------------------|---------------------|--------------|
| 1   | 10               | 100000              | 90%          |
| 2   | 100              | 10000               | 99%          |
| 3   | 1000             | 1000                | 99.9%        |
| 4   | 10000            | 100                 | 99.99%       |
| 5   | 100000           | 10                  | 99.999%      |
| 6   | 1000000          | 1                   | 99.9999%     |

**E. coli** at 24 hours-Untreated



**E. coli** at 24 hours-Treated with Perma-Kleen



# Reference

#### Graph 1: Escherichia coli/ Gram (-) Log Reduction

| Sample | Number of Living Bacteria at<br>Beginning (per cm²) | Number of Living Bacteria<br>After 24 hrs (per cm²) | Activity Against Control | Reduction % |
|--------|-----------------------------------------------------|-----------------------------------------------------|--------------------------|-------------|
| 1      | 1.4x10 <sup>4</sup>                                 | < 11                                                | >5.2                     | > 99.999    |
| 2      | 1.4x10 <sup>4</sup>                                 | < 25                                                | > 4.8                    | > 99.998    |
| 3      | 1.4x10 <sup>4</sup>                                 | < 11                                                | > 5.2                    | > 99.999    |
| 4      | 1.4x10 <sup>4</sup>                                 | < 17                                                | > 5.0                    | > 99.999    |
| 5      | 1.4x10 <sup>4</sup>                                 | < 11                                                | > 5.2                    | > 99.999    |
| 6      | 1.4x10 <sup>4</sup>                                 | < 11                                                | > 5.2                    | > 99.999    |

#### Graph 2: Salmonella enterica subsp. Enterical/ Gram (-) Log Reduction

| Sample | Number of Living Bacteria at<br>Beginning (per cm²) | Number of Living Bacteria<br>After 24 hrs (per cm²) | Activity Against Control | Reduction % |
|--------|-----------------------------------------------------|-----------------------------------------------------|--------------------------|-------------|
| 1      | 8.6 x 10 <sup>3</sup>                               | < 2.5                                               | > 3.6                    | > 99.97     |
| 2      | 8.6 x 10 <sup>3</sup>                               | < 2.5                                               | > 3.6                    | > 99.97     |
| 3      | 8.6 x 10 <sup>3</sup>                               | < 2.5                                               | > 3.6                    | > 99.97     |
| 4      | 8.6 x 10 <sup>3</sup>                               | < 2.5                                               | > 3.6                    | > 99.97     |
| 5      | 8.6 x 10 <sup>3</sup>                               | < 2.5                                               | > 3.6                    | > 99.97     |
| 6      | 8.6 x 10 <sup>3</sup>                               | < 2.5                                               | > 3.6                    | > 99.97     |

#### Graph 3: Staphylococcus aureusl Gram (-) Log Reduction

| Sample | Number of Living Bacteria at<br>Beginning (per cm²) | Number of Living Bacteria<br>After 24 hrs (per cm²) | Activity Against Control | Reduction % |
|--------|-----------------------------------------------------|-----------------------------------------------------|--------------------------|-------------|
| 1      | 2.0 x 10 <sup>4</sup>                               | < 11                                                | > 3.8                    | > 99.98     |
| 2      | 2.0 x 10 <sup>4</sup>                               | < 25                                                | > 3.5                    | > 99.96     |
| 3      | 2.0 x 10 <sup>4</sup>                               | < 11                                                | > 3.8                    | > 99.98     |
| 4      | 2.0 x 10⁴                                           | < 17                                                | > 3.6                    | > 99.98     |
| 5      | 2.0 x 10 <sup>4</sup>                               | < 11                                                | > 3.8                    | > 99.98     |
| 6      | 2.0 x 10 <sup>4</sup>                               | < 11                                                | > 3.8                    | > 99.98     |

#### Graph 4: Listeria monocytogenes/ Gram (-) Log Reduction

| Sample | Number of Living Bacteria at<br>Beginning (per cm²) | Number of Living Bacteria<br>After 24 hrs (per cm²) | Activity Against Control | Reduction % |
|--------|-----------------------------------------------------|-----------------------------------------------------|--------------------------|-------------|
| 1      | 1.5 x 10⁴                                           | < 2.5                                               | > 4.3                    | > 99.995    |
| 2      | 1.5 x 10⁴                                           | < 2.5                                               | > 4.3                    | > 99.995    |
| 3      | 1.5 x 10⁴                                           | < 2.5                                               | > 4.3                    | > 99.995    |
| 4      | 1.5 x 10⁴                                           | < 2.5                                               | > 4.3                    | > 99.995    |
| 5      | 1.5 x 10⁴                                           | < 2.5                                               | > 4.3                    | > 99.995    |
| 6      | 1.5 x 10⁴                                           | < 2.5                                               | > 4.3                    | > 99.995    |

### Conclusion

Perma-Kleen anti-microbial wiring devices, cables and cordsets provide a new and innovative approach to controlling microbial growth in the most difficult surfaces to clean. By incorporating anti-microbial additives stored within the polymer, continual, long-lasting protection is ensured. Confidence and peace of mind is achieved through the protection of employees and consumers against harmful and potentially deadly microbial contamination.









#### **Electrical Manufacturing**

4323 Hamann Parkway Willoughby, OH, 44904 info@ericson.com ericson.com 1.800.ERICSON L1000794B